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The paper deals with the regular refraction of a plane shock a t  a gas interface for 
the particular case where the reflected wave is an expansion fan. Numerical 
results are presented for the air-CH, and air-CO, gas combinations which are 
respectively examples of ‘slow-fast ’ and ‘ fast-slow ’ refractions. It is found that 
a previously unreported condition exists in which the reflected wave solutions 
may be multi-valued, The hodograph mapping theory predicts a new type of 
regular-irregular transition for a refraction in this condition. The continuous 
expansion wave type of irregular refraction is also examined. The existence of 
this wave system is found to depend on the flow being self-similar. By contrast 
the expansion wave becomes centred when the flow becomes steady. Transitions 
within the ordered set of regular solutions are examined and it is shown that 
they may be either continuous or discontinuous. The continuous types appear to 
be associated with fixed boundaries and the discontinuous types with movable 
boundaries. Finally, a number of almost linear relations between the wave 
strengths are noted. 

1. Introduction 
An earlier paper (Henderson 1966) discussed the refraction of a shock wave i at 

the interface between two different gases. It was shown inter alia that, when the 
refraction was regular and the reflected wave a shock r ,  then the equations of 
motion describing the flow near the refraction point could be reduced to a single 
polynomial equation of twelfth degree. It was found that as many as four of the 
roots could be of physical significance so that the theory was multi-valued to 
this extent. These roots were arranged as an ordered set by using the strength 
(pressure ratio) of the transmitted shock t to do the ordering and it was shown that 
it was the weakest member of the set that agreed with the experimental data 
obtained by Jahn (1956). Now the reflected wave in aregular refraction may be an 
expansion e as well as a shock and the ordered set will often be augmented by a 
single solution of this type. While some discussion was devoted to this solution no 
detailed numerical data were presented on it. This deficiency is made good here. 
The data reveal a previously unreported condition in which there exist two 
alternative solutions of the expansion type. Usually when two such solutions 
are obtained one of them can be rejected on physical grounds, because, for ex- 
ample, it may require the reflected wave to propagate forward of the refraction 

f Now on leave at Graduate School of Aerospace Engineering, Cornell University, 
Ithaca, N.Y. 
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point. However, in the present case both solutions seem to be physically ac- 
ceptable. The hodograph mapping technique indicates that the irregular wave 
system that borders this condition is basically the double Mach reflexion variety. 
It is argued that this system will have geometrical degeneracy when Mo > 4-5. 
The appearance predicted for this regular-irregular transition is that a 3-wave 
system containing a reflected expansion of finite strength changes quickly into a 
3-wave system containing a reflected shock of finite strength. Transitions be- 
tween regular solutions within the ordered set are also examined and it is shown 
that they may occur either continuously or discontinuously. A plausibility 
argument indicates that the continuous types are associated with fixed boundaries 
and the discontinuous types with movable boundaries. Finally, it is pointed out 
that the solutions of the augmented set will have a certain linear character in the 
relations between the shock strengths. 

2. Analysis of the regular refraction 
Consider a thin plane membrane of indefinitely small mass which separates 

two gases that may in general be of different composition but which initially have 
the same temperature and pressure. Each gas is assumed to occupy a half space 
of indefinite extent. Suppose that a plane incident shock i begins suddenly in one 
gas and propagates towards the other. Then it will be refracted a t  the interface 
between them and in the process a shock t will be transmitted into the second gas 
and a reflected wave will be propagated back into the first gas, figure 1. It will 
be assumed that the entire motion is steady and two-dimensional. When the 
reflected wave is an expansion fan e the following equations are available from 
ordinary one-dimensional gasdynamics : 

In  the vicinity of the refraction point the following continuity conditions are 
assumed to apply : 

pT/pB = ( p l / p O )  (‘2IPl) ( 5 )  

and = S O +  v1; (6) 
and one also has that Po = PB. 
Under equilibrium conditions the velocities of the incident and transmitted 
shocks will be equal along the interface and therefore vo = wB. The speed of sound 
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FIGURE 1. Regular wave system nomenclature. i, incident shock; t, transmitted shock; 
r ,  reflected shock; e, reflected expansion; mm, interface. 

is given by ao, = [yo RTo,B/A0,B]* but since To = TB the following relation can 
be obtained between the Mach numbers upstream of the incident and trans- 
mitted shocks : 

Equations (1) to (7) will be collectively called the (integrated) equations of 
motion. There are eight of them altogether and they involve thirteen variables, 
namely 

Thus to define a solution or set of solutions it is necessary to assign values to five 
of the variables. For this purpose it will be convenient to select yo, B ,  AB/A0, 
M,, Pl/Po. A particular set of values of these variables will be the initial conditions 
that specify a set of solutions. Because of the transcendent,al nature of the equa- 
tions it is not possible toreduce them to a single polynomial as was done previously 
where the reflected wave was a shock. Numerical results were obtained from the 
equations by a process that amounted to setting up part of the hodograph dia- 
gram on a computer. Solutions were defined by the intersection(s) of the charac- 
teristic that represented the expansion? with the polar that represented the 
transmitted shock. The intersection(s) were found by a simple iterative procedure. 
Detailed data were compiled for the air-CH, and air-CO, combinations and as in 
the earlier paper the results have been presented graphically by plotting the 
pressure ratio across the transmitted shock against the pressure ratio across the 
incident shock for a constant Mach number No, figures 2 and 3. Additional data 
needed for special aspects of the investigation are shown in figures 4, 5 and 6 .  
The gas constants were as shown in table 1 and with these values (7) becomes 

Air CH4 C0.a 
Ratio specific heats y 1.402 1.303 1.288 
Molecular weight 29.02 16.04 44-01 

TABLE 1 

25-2 
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FIQTJRE 2. Physically significant solutions for the regular refraction of a plane shock at 
the air-CH, interface. - , solution curve; - - , sonic lines; ---, normal shock line; 
(a) M ,  = 2.0; (b )  Mo = 3.0; ( c )  Mo = 4.0; (d) M ,  = 5.0. 
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FIGURE 3. Physically significant solutions for the regular refraction of a plane ahock at the 
air-CO, interface. -, solution curve; - -, sonic line; ---, normal shock line; M,, = 1.5. 

a0 

FIGURE 4. Comparison of theoretical and experimental data for regular shock refraction. 
-, present theory; ---, Polacheck & Seeger (1951) theory; +, Jahn's (1956) experi- 
mental data. 
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FIGURE 5.  Maximum shock wave deflection angles. Absolute value for air; relative value 

for CH,, CO,, that is, MOH4,C0, = 0.7711, 1*284,M0. 
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FIGURE 6. Initial conditions for the ordered set (el, e2) .  
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FIGURE 7. Sequence of events obtained by permitting the incident shock i to increase its 
strength until the refraction becomes irregular. Air-CH, interface with initial conditions 
such that SCHqmax < S7,. 

3. The regular refraction at the air-CH, interface 
For this combination of gases aair < aCE, and the refraction is said to be 'slow- 

fast '. In  the 1966 paper the hodograph mapping technique was used to construct 
orderly sequences of events of the various wave phenomena. A particular se- 
quence was built up by imagining that the incident shock was initially a Mach 
line and then allowing its strength to gradually increase until it  approached that 
of a normal shock. Maps were constructed in both physical and hodograph planes 
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FIUURE 7 (cont.) 

and by using one map to correct the other a fairly complete qualitative picture 
of the sequence could be deduced. A typical sequence is shown in figure 7. Further 
studies on the computer have shown that a hitherto unreported effect exists 
when M0 > 4.5. This is basically due to the maximum shock wave deflexion angle 
in methane SCH, max becoming relatively larger than that in air, SCHdmax > S,,, max, 
as No increases, figure 5.  Here 'relative' means that Mo(air) and McH, satisfy (8). 
The way in which the effect modifies the sequence is shown in figure 8 and it will 
now be considered in more detail. 

With a slight displacement of D2 the intersection of the characteristic c, with 
polar I1 defines the solution el which physically represents a regular refraction 
with a reflected expansion. The displacement also gives the solutions al, a2 which 
are defined by the intersections of polars I1 and 111. Each of these solutions re- 
presents a regular refraction with a reflected shock. The ordered set is thus 
(e1,a1,a2). There is no change in the character of the set until the following 
coincidence is formed, D, = e2 = a1 =_ a, = A,. At this condition the reflected 
waves of e2, al, a2 degenerate to Mach lines-called a Mach line degeneracy but the 
reflected wave of el remains of finite strength. For displacement beyond the 
coincidence there are no intersections of physical interest between polars I1 and 
I11 and the al, a2 solutions cease to exist. Instead the characteristic c1 now inter- 
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FIGURE 8. Sequence of events obtained by permitting the incident shock i to increaae its 
strength until the refraction becomes irregular. Air-CH4 interface with initial conditions 
such that 8oCBrmax > SYr. 

sects polar I1 in two places and the set becomes (el, eZ). Physically both of these 
solutions represent regular refractions with reflected expansions. The next 
event of interest is the coincidence el = e, and for displacement beyond this 
condition the set is empty. It is therefore concluded that el = e2 is a boundary 
between a regular refraction with a reflected expansion and an irregular refrac- 
tion. 

The set (el, a,, a,) exists over the range of initial conditions defined by the end- 
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points D, = D, and D, = A,. Physically these coincidences correspond re- 
spectively to the incident shock and the reflected wave becoming Mach line 
degeneracies. The set ( E , ,  8,) exists over the range D, = A ,  to el = e2. At the latter 
condition there is in general no degeneracy so all waves remain at  finite strength. 
The numerical data are shown in figure 2 and for completeness the a,, a2 data 
which have been published before Henderson (1966) are also shown. Further data 
were obtained in a form that was suitable for comparison with the experimental 
results of Jahn (1956), figure 4. Jahn compared his data with some early theoreti- 
cal calculations due to  Polachek & Seeger (1951), and their results are also shown. 
They used idealized values for the gas constants, for example yco,,CR4 - g ,  

and this has a marked effect on the curves as may be seen in figure 4. Jahn used 
an approximation to correct for this effect. It will be noted that it is the weakest 

- 4  
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member of the set that agrees with the experimental data. In  general, agreement 
is within the limits of experimental error although some small discrepancies are 
apparent. In  the earlier papers argument was presented to show that the weakest 
member of the set should also be preferred on theoretical grounds. The conclusion 
was subject to the provisions that there were no boundaries or strong disturbances 
in the flow, for if they are present then they may be able to maintain the higher 
downstream pressures associated with the stronger solutions. In  this event one 
of the stronger solutions may be forced to appear. The process has actually been 
demonstrated in a classic experiment reported by Busemann (1949). 

Consider now the set (el,e2) which has not been discussed previously. The 
following continuity argument makes it plausible to prefer E, subject to the above 
qualification. Refer to figure 8 and suppose that D, = A,, and let the pressure 
ratio P,,/P, across i suffer a small variation. When the increment is negative the 
set will be (el, a,, a,) and there is no doubt that the el solution will appear. When 
the increment is positive the set will be (el, 6,) and the only member common to 
both sets will be el. It is evident that if el also appears in the second case then the 
transition across the coincidence will be continuous. A small change in the 
strength of i will then be matched by a small change in the strength oft and the 
reflected wave e will be of negligible strength. The numerical data show that the 
process is very nearly linear. By contrast the appearance of the e2 solution would 
require that a pressure increment (disturbance) across i, no matter how small, 
would cause a sudden and finite increase in the strengths o f t  and e. One way in 
which the transition el -+ e2 could be made plausible is that if simultaneously with 
crossing the coincidence D, = A ,  a suitably shaped boundary is brought from 
infinity and placed behind and close to t. Similarly in the reverse process el + e2 
the boundary would have to be removed to infinity. Thus the discontinuous tran- 
sition el 5 e2 is apparently associated with movable boundaries and this suggests 
that such transitions may occur during oscillatory phenomena involving shock 
waves. The e2 solution would also be the plausible choice if the boundary were 
placed in position before the transition so that the a, solution was forced to 
appear. The a, $ e2 transition is also continuous and physically a small variation 
in the strength of i would be matched by a small variation in the strength oft. 
The reflected wave is again of negligible strength and here also the numerical 
results show the variation to be very nearly linear. After studying the remaining 
transitions one is led to the following hypothesis. The continuous transitions are 
el % el, a, + e,, a, e E,, and these are associated with steady boundaries; the dis- 
continuous transitions are el z e,, a, T)C el, a2 + el, and these are associated with 
movable boundaries. 

4. The irregular refraction at the air-CH, interface 
Beyond the coincidence el = E, the characteristic c, no longer intersects polar 

I1 and a small gap El E ,  opens between them; El ,  E, are the former tangency 
points on both curves. For an infinitesimal gap the state of the gas immediately 
downstream of the wave system should be largely dominated by conditions at  
El, E,. This is due to the streamlines crowding together as they pass out through 
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the gap (Busemann 1949; Guderley 1947; Kawamura & Saito 1956; Henderson 
1966). The hodograph diagram now begins to resemble the ones shown in figure 
7c, d, e ,  and as a preliminary the salient features of this sequence will be men- 
tioned briefly. Physically the opening of the gap implies that t can no longer 
provide enough pressure to match the combined pressure across both i and r.  
It is this strong disturbance that forces a basic change in the wave system struc- 
ture. The hodograph diagram shows that a Mach stem rt should be present but it 
was not detected by Jahn. He found instead a 3 shock system as illustrated in 
figure 7 c, d. Since, however, the hodograph diagram requires n to be present it is 
concluded that rt is confined to a region that is too small to detect. This will be 
called a geometric degeneracy. Sternberg (1959) encountered a similar situation 
in his study of the Guderley wave confluence. It appears from his results that 
the Guderley patch is too small to be detected in a laboratory scale experiment. 
With a continued increase in the strength of i the maximum shock attachment 
angle for methane SCR4 max is eventually exceeded, ay1 > ScH, max, and this forces 
n to grow. Growth takes place by r moving away from the interface and along i. 
In  summary it may be said that the irregular wave system shown in figure 7c 
appears when equation (5) can no longer be satisfied while the system shown 
in figure 7e appears when the shock wave analogue of equation (6), namely 
S, = So + S,, can no longer be satisfied. The whole process has been discussed in 
greater detail in our earlier paper. The similarities of the hodograph diagrams 
in figures 7, 8 suggest that the physics are also similar but there are some 
important differences and on taking them into account the following picture 
emerges of the physical plane in figure 8. 

When the gap opens the polar map oft is extended around to the intersection 
A ,  and because A ,  is in the negative S half-plane this will mean that t must in- 
cline forward near the interface. Furthermore, the interface itself will now be 
deflected downwards instead of upwards. This alters the nature of the ‘corner’ 
at  the refraction point and requires the reflected wave to change from the 
expansion e to  the shock r.  Assuming that these changes take place continuously 
it will be convenient to suppose that r appears downstream of e and then streng- 
thens while e weakens, An extra polar I11 a is now added to the diagram so that r 
can be mapped. Its construction commences a t  D, = E,, which represents the 
state of the gas immediately downstream of e. I n  general IIIa will make two inter- 
sections (PI, p,) with polar I and physically both points represent a confluence 
of three shock waves. As the strength of i continues to increase the gap widens 
and D, = E, approaches D, and finally joins it D, = E, 3 D,. In  the process e 
degenerates to a Mach line and becomes physically trivial. The p, solution is 
now unique-f. and it is also one end-point of the Mach stem n. The other end-point 
is near A ,  and it is determined by polar IV. The existence of IV depends on A ,  
being on the supersonic part of polar I. The hodograph diagram of figure 8e 
now has some resemblance to the one in figure 7c and IIIa may be conveniently 
relabelled I11 and 1, relabelled y,. 

-f The pz solution is also preferred in the earlier development because the gap opening 
is physically equivalent to a strong disturbance in the flow; that is equation (6) is no longer 
satisfied. 
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Consider finally the growth of n. It has been noted that this takes place by r 
being displaced along i. The regular-irregular transition illustrated in figure 8 
probably takes place quite quickly. This is due to the substantial changes that 
are required a t  the corner once the gap begins to open and even an infinitesimal 
movement of r will sweep e out of existence. On the other hand it can now be 
shown that a large displacement of r is not always possible. Thus it will be recalled 
that the condition for the displacement of r is that > 6CH,max. Clearly this 
condition will be impossible if 6CH,max > a,,, max but it will be seen from figure 
5 that this is just what happens when Mo > 4.5. It is therefore concluded that n 
cannot grow if M, > 4.5 but that it can grow if M, < 4.5. More precisely the boun- 
dary between the two conditions is = aCHdmax but the corresponding Mach 
number is still very nearly Mo = 4.5. Figure 7 illustrates a sequence where n does 
grow and figure 8 where it does not. Accordingly the theory predicts that an 
experiment performed at the initial conditions corresponding to figure 8 will 
show that the wave system will change from a regular 3 wave refraction contain- 
ing a reflected expansion of finite strength to an irregular 3 wave refraction con- 
taining a reflected shock of finite strength. Jahn did not report an experiment at  
the required initial conditions and it probably has not yet been observed. 

A further remark is needed on the nature of the corner at the refraction point. 
During the regular-irregular transition illustrated in figure 8 the Mach stem n 
gradually comes into existence-although it remains geometrically degenerate. 
The hodograph map of n lies partly in the negative 6 half-plane and partly in the 
positive 6 half-plane and it provides the necessary adjustment in flow direction 
between i and r on the one hand and t on the other. The problem is to decide 
which direction prevails in the downstream flow. Owing to the degeneracy of n 
the maps are of no help. However, Jahn’s experiments corresponding to the 
sequence shown in figure 7 show that the flow is deflected in the positive direc- 
tion, and it has been assumed that the same thing happens for the wave systems 
shown in figure 8 e where n has become fully formed. 

5. The regular refraction at the air-CO, interface 
For this interface solutions of the el type occur only for a very restricted range 

of initial conditions. Numerical data are shown in figure 3 and a typical sequence 
in figure 9. The set is initially? (a,,a,) and subsequently changes to (el) after 
the coincidence D, = E, = a, = a2 = A,. Additional data are compared with 
Jahn’s experimental results in figure 4. Agreement is good for ( = P,,/P, = 0.85 
but there are no experiments to compare with el when ( = 0.3. Our calculations 
show that the single experimental point obtained by Jahn for this shock strength 
actually corresponds to an irregular refraction. The regular-irregular transition 
occurs a t  D, _= S,, which corresponds to sonic flow downstream of i. From Jahn’s 
results it is found that the el solution becomes irregular by the expansion fan 
broadening into a continuous band of expansion waves as illustrated in figure 9. 
A detailed study of the hodograph diagram shows that in this case it is necessary 

t There may exist the set (a1, pl, p2, crz) as Pl/P,, -+ 1 but the range of initial conditions 
is very small (Henderson 1966). 
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FIUIJRE 9. Sequence of events obtained by permitting the incident shock i to increase its 
strength until the refraction beoomes irregulw. Air-CO, interface. 

to distinguish between self-similar and steady-state flows. Since Jahn’s experi- 
ments were performed in a shock tube the flow was substantially self-similar and 
its solution will be considered first, figure 9c. The Mach number Moi is variable 
upstream of the curved part of i and in particular it decreases monotonically 
along i as the interface is approached. As a result, i begins to refract before it 
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FIGURE 9 (cont.) 

reaches the interface. This refraction can be analysed by supposing that the Mach 
number changes in small discrete steps; then as i encounters each increment it 
suffers a regular refraction which causes a reflected expansion wave of small inten- 
sity to be emitted. In  the hodograph plane both the curved part of i and the band 
of expansion waves map with the same segment and the map terminates where the 
segment intersects polar 11. A somewhat similar flow has been described else- 
where (Henderson 1967) in which under prescribed initial conditions an incident 
shock emits a band of expansion waves as it penetrates the boundary layer on a 
flat plate. For steady flow the Mach number is constant upstream of i and there- 
fore i must map into a segment of a single polar and not cut across the polars as 
in the self-similar solution. The flow also depends on the type of boundary that 
generates i. In figure 9d this is assumed to be a finite wedge. The sonic line begins 
at the refraction point and ends on the wedge. Instead of a continuous band of 
expansion waves there is now a centred fan. Guderley (1962, p. 145) has discussed 
a somewhat similar flow in connexion with the structure of wave patterns in free 
jets. In  summary the hodograph diagram predicts for this irregular refraction 
that the refleeted wave develops into a continuous band of expansion waves when 
the flow is self-similar but the reflected wave degenerates into a centred expansion 
fan when the flow is steady. 

6. Remarks on the linear character of some solutions 
Referring again to figures 2,3 ,  it will be noted that, for the weakest member of 

the set, the pressure ratio across the transmitted shock is very nearly proportional 
to the pressure ratio across the incident shock. Now because the curve passes 
through the origin it follows from (5) that the constant of proportionality is the 
pressure ratio across the reflected wave. The weakest member of the set has the 
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same linear character in all the cases that have been computed, and the hodograph 
diagram indicates that this is a general property of the set. The reflected wave is 
usually weak; a striking example of this is shown in figure 3 where the pressure 
ratios across i and t are almost the same. Thus when PJP, = 1.300 the computer 
shows that PB/Po = 1.301 and hence for the reflected wave P2/Pl = 1.001, which 
is a very weak wave. Hence even though there is the drastic change in the 
medium air 3 CO, there is practically no effect on the strength of the propagating 
shock? PJP, z PB/Po. Although other members of the set do result in significant 
changes in the wave strength as the medium changes they also exhibit an inter- 
esting linearity expecially for the slow-fast refraction. This is illustrated by the 
a1 solution in figure 2 where over much of the range of initial conditions the 
strength o f t  is almost independent of the strength of i. It follows from (5) that 
the strengths of i and r are almost inversely proportional. The effect is most 
marked at  higher M, where the a, solution also begins to display it. 
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